Various Ricci Identities in Finsler Space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Ricci identities for submanifolds in the 2-osculator bundle

It is the purpose of the present paper to outline an introduction in theory of embeddings in the 2-osculator bundle. First, we recall the notion of 2-osculator bundle ([9], [2], [4]) and the notion of submani-folds in the 2-osculator bundle ([9]). A moving frame is constructed. The induced connections and the relative covariant derivation are discussed in the fourth and fifth section ([15], [16...

متن کامل

The Entropy of Lagrange–Finsler Spaces and Ricci Flows

We formulate a statistical analogy of regular Lagrange mechanics and Finsler geometry derived from Grisha Perelman’s functionals and generalized for nonholonomic Ricci flows. Explicit constructions are elaborated when nonholonomically constrained flows of Riemann metrics result in Finsler like configurations, and inversely, when geometric mechanics is modelled on Riemann spaces with a preferred...

متن کامل

Nonholonomic Ricci Flows: I. Riemann Metrics and Lagrange–Finsler Geometry

In this paper, it is elaborated the theory the Ricci flows for manifolds enabled with nonintegrable (nonholonomic) distributions defining nonlinear connection structures. Such manifolds provide a unified geometric arena for nonholonomic Riemannian spaces, Lagrange mechanics, Finsler geometry, and various models of gravity (the Einstein theory and string, or gauge, generalizations). We follow th...

متن کامل

Ricci Type Identities for Non-basic Differentiation in Otsuki Spaces

In the Otsuki spaces one uses non-symmetric connections: one for contravariant and other for covariant indices. Also, we have two kinds of covariant differentiation-basic and non-basic. In the present work we investigate the Ricci type identities and curvature tensors for the non-basic differentiation.

متن کامل

On Ricci identities for submanifolds in the 2-osculator bundle

It is the purpose of the present paper to outline an introduction in theory of embeddings in the 2-osculator bundle. First, we recall the notion of 2-osculator bundle ([1],[2]) and the notion of submanifolds in the 2-osculator bundle. A moving frame is constructed. The induced connections and the relative covariant derivation are discussed in third and fourth sections.The Ricci identities for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society

سال: 1969

ISSN: 1446-7887,1446-8107

DOI: 10.1017/s1446788700005802